| RFA 11-02 APPENDIX B: CIRM TRANSLATIONAL PORTFOLIO | | | | | |--|-------------------------|-------|---|--| | AWARD # | PROGRAM | GOAL* | DISEASE | APPROACH | | TR1-01273 | Early
Translation I | DC | Blood Disorder: Fanconi
Anemia, XSCID | Autologous human iPSC-derived HSC genetically corrected by homologous recombination | | DR1-01452 | Disease Team | IND | Blood Disorder: Sickle
Cell Disease | Autologous human HSC, genetically corrected ex vivo by lentiviral vector mediated addition of a hemoglobin gene that blocks sickling. IV administration after myeloablation | | TR1-01216 | Early
Translation I | DC | Bone/Cartilage
Disorders: Focal cartilage
defect, osteoarthritis | Human iPSC- or ESC derived chrondrocyte progenitors implanted into chrondral defect or injected into OA joint | | TR2-01829 | Early
Translation II | DC | Bone/Cartilage
Disorders: Osteoarthritis | Optimized small molecule of lead
molecule PRO1 that induces
chrondrocyte differentiation of resident
human MSC | | TR2-01780 | Early
Translation II | DCF | Bone/Cartilage Disorders: Osteoporosis- related vertebral compression fractures | Human MSC in combination with PTH (parathyroid hormone) | | TR2-01821 | Early
Translation II | DC | Bone/Cartilage
Disorders: Spinal fusion | Autologous human adult perivascular
stem cells and an osteoinductive
protein on a FDA-approved acellular
scaffold | | TR2-01816 | Early
Translation II | DC | Cancer: Hematologic malignancy (AML, ALL) | Small molecule inhibitor of BCL6 targeting human CSC | | DR1-01430 | Disease Team | IND | Cancer: Hematologic
malignancy (AML, CML,
ALL, CLL) | Existing candidate molecules (3 small molecule, 3 MAb) targeting leukemic stem cells (LSC) by blocking survival and self-renewal pathways that function preferentially in human CSC compared to normal HSC | | DR1-01485 | Disease Team | IND | Cancer: Hematologic malignancy (AML) | Monoclonal antibody against human CD47 – "Don't eat me" antigen that is expressed on LSC and inhibits their phagocytosis by macrophages | | TR2-01789 | Early
Translation II | DC | Cancer: Hematologic malignancy (CML) | Small molecule pan BCL-2 inhibitor targeting human CSC | | DR1-01477 | Disease Team | IND | Cancer: Solid tumor (colon, ovarian) | Small molecules specific for either of two drug targets in CSC | | DR1-01421 | Disease Team | IND | Cancer: Solid tumor
(Glioblastoma) | Allogeneic established hNSC line to target tumor, engineered ex vivo to deliver carboxylesterase to locally convert CPT-11 to more potent SN-38 | | DR1-01426 | Disease Team | IND | Cancer: Solid tumor
(Glioblastoma) | Best of allogeneic hNSC, adult or fetal, or hMSC to target tumor, engineered ex vivo to deliver a tumorcidal gene product, TRAIL or cytosine deaminase, and a suicide gene delivered either intratumoral or intravscular | | | RFA 11-02 | APPEND | OIX B: CIRM TRANSLA | TIONAL PORTFOLIO | |-----------|-------------------------|--------|---|---| | AWARD # | PROGRAM | GOAL* | DISEASE | APPROACH | | TR2-01791 | Early
Translation II | DC | Cancer: Solid tumor
(Glioblastoma) | Tumor homing by hMSC genetically engineered to produce replication competent retrovirus encoding a suicide gene | | DR1-01423 | Disease Team | IND | Diabetes: Type 1 | Allogeneic hESC-derived pancreatic cell progenitors in a device implanted sc that mature in vivo to beta cells that secrete insulin in response to glucose. Transient immunosuppression | | DR1-01444 | Disease Team | IND | Eye Disease: Age-
related macular
degeneration (dry form) | Allogeneic functionally polarized hESC-
derived RPE monolayers on synthetic
substrate implanted sub-retinally | | TR1-01219 | Early
Translation I | DC | Eye Disease: Age-
related macular
degeneration (dry form) | Autologous human iPSC-derived RPE (generated without integrating vectors) | | TR1-01272 | Early
Translation I | DC | Eye Disease: Age-
related macular
degeneration (dry form) | Autologous human adult SC (CMZ) or iPSC-derived RPE +/- ex vivo engineering to express negative regulators of complement cascade | | TR2-01768 | Early
Translation II | DCF | Eye Disease: Limbal stem cell deficiency | Ex vivo expansion of human corneal epithelial stem/progenitor cells, also known as limbal stem cells (LSC) | | TR2-01794 | Early
Translation II | DC | Eye Disease: Retinitis Pigmentosa | Allogenic human retinal progenitor cells | | DR1-01461 | Disease Team | IND | Heart Disease: Advanced ischemic cardiomyopathy | Autologous human cardiac derived cells, 'cardiospheres', expanded and delivered by direct catheter injection into heart muscle | | DR1-01431 | Disease Team | IND | HIV/AIDS | Autologous human HSC transduced ex vivo with a lentiviral vector engineered to express an shRNA against CCR5 & a fusion inhibitor. IV administration after myeloablation | | DR1-01490 | Disease Team | IND | HIV/AIDS | Autologous human HSC transduced ex vivo with non-integrating vector engineered to express a zinc finger nuclease targeting CCR5. IV administration after myeloablation | | TR2-01771 | Early
Translation II | DC | HIV/AIDS | Autologous human HSC genetically modified with multiple anti-HIV resistance genes and a drug resistance gene | | TR2-01857 | Early
Translation II | DC | Liver Failure | Allogeneic genetically modified hESC-derived hepatocytes | | TR1-01249 | Early
Translation I | DC | Multiple | Recombinant Wnt in a sustained release formulation to stimulate endogenous stem cells to repair tissue | | TR2-01844 | Early
Translation II | DC | Neurodegenerative
Disease - Spinal
Muscular Atrophy | Small molecule that increases SMN1 in patient iPSC-derived motor neurons | | | RFA 11-02 | 2 APPEND | IX B: CIRM TRANSLA | TIONAL PORTFOLIO | |-----------|-------------------------------------|----------|--|--| | AWARD # | PROGRAM | GOAL* | DISEASE | APPROACH | | DR1-01471 | Disease Team | IND | Neurodegenerative
Disease: ALS | Allogeneic hESC-derived astrocyte precursors delivered into spinal cord (delivery device) | | TR1-01245 | Early
Translation I | DC | Neurodegenerative
Disease: Alzheimer's
Disease | Allogeneic hESC-derived NSC | | TR2-01832 | Early
Translation II | DCF | Neurodegenerative
Disease: Canavan
Disease | Autologous iPSC-derived neural or oligodendrocyte progenitors, genetically modifed to correct mutant aspartoacylase (ASPA) gene | | TR1-01257 | Early
Translation I | DC | Neurodegenerative
Disease: Huntington's
Disease | Allogeneic hMSC engineered ex vivo to express siRNA targeting mutant huntingtin mRNA. Injected intracranially | | TR2-01841 | Early
Translation II | DC | Neurodegenerative
Disease: Huntington's
Disease | allogeneic hESC-derived neural stem or progenitor cells for transplantation | | TR1-01267 | Early
Translation I | DC | Neurodegenerative
Disease: Parkinson's
Disease | hNSC derived from best of adult SC, hESC, iPSC | | TR2-01778 | Early
Translation II | DCF | Neurodegenerative
Disease: Parkinson's
Disease | Small molecule modulator of
neuroinflammation identified by
screening on astrocytes/microglial from
patient derived iPSC | | TR2-01856 | Early
Translation II | DC | Neurodegenerative
Disease: Parkinson's
Disease | Allogeneic hESC-derived dopaminergic neurons | | TR2-01749 | Early
Translation II | DCF | Neurological Disorder:
Refractory epilepsy | hESC-derived progenitors of GABAergic inhibitory neurons analogous to those isolated from medial ganglionic eminence | | TR2-01767 | Early
Translation II | DCF | Neurological Disorder:
Traumatic brain injury | Allogeneic hESC-derived NSC | | TR2-01814 | Early
Translation II | DCF | Neurological Disorders:
Autism Spectrum
Disorders | Neurons from ASD (and control) iPSC for phenotype screening, assay development and validation, drug screening and biomarker identification | | CT1-05168 | Targeted
Clinical
Development | | Neurological Disorders:
subacute SCI (complete
thoracic injury, complete
cervical injury,
incomplete thoracic
injury) | h-ESC-derived oligodendrocyte
progenitor cells | | TR2-01785 | Early
Translation II | DCF | Neurological Disorders:
SCI (conus
medullaris/cauda equina,
CM/CE, injury) | hESC-derived motor and autonomic precursor neurons | | TR2-01756 | Early
Translation II | DCF | Skeletal muscle
disorders: Duchenne
muscular dystrophy | Autologous skeletal muscle precursor cells derived from human iPSC genetically modifed to correct the dystrophin gene | | RFA 11-02 APPENDIX B: CIRM TRANSLATIONAL PORTFOLIO | | | | | |--|-------------------------|-------|---|---| | AWARD # | PROGRAM | GOAL* | DISEASE | APPROACH | | DR1-01454 | Disease Team | IND | Skin Disease:
Epidermolysis bullosa | Epidermal sheets from expanded autologous genetically corrected (to express wt COL7A1) iPSC-derived keratinocytes | | TR2-01787 | Early
Translation II | DC | Diabetes: Wound
healing, Chronic Diabetic
foot ulcers | Allogenic hMSC on a dermal regeneration scaffold | | DR1-01480 | Disease Team | IND | Neurolgical Disorders:
Stroke | Allogeneic hESC-derived NSC line alone or in combination with matrix | ^{*} The Project Goal is: IND - file an approvable IND with the FDA; DC - achieve a development candidate ready for IND-enabling preclinical development DCF - show feasibility of a potential development candidate by achieving initial proof of concept